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Abstract. We study the intelligent states associated with the Holstein–Primakoff realization of
su(2). The explicit expressions of these states in terms of the Gauss hypergeometric functions are
derived and their statistical properties are investigated in detail. It is shown that in some special or
asymptotic cases these states turn out to be such important states as the binomial states, number
states, Glauber coherent states, squeezed coherent states, etc in quantum optics.

1. Introduction

Other than the harmonic oscillator, whose dynamical symmetry group is the well-known
Heisenberg–Weyl group H4, the concept of coherent states (CS) [1, 2] has been generalized
to describe systems associated with an arbitrary Lie group. Three different approaches have
been developed to this problem [2]. For the harmonic oscillator case, all these approaches
equivalently result in the Glauber CS [3], but for other Lie groups they lead to distinct
quantum states. The Perelomov CS [4, 5], which are constructed by the action of group
elements on a reference state of a group representation Hilbert space, have various properties
(e.g. overcompleteness and invariance under the action of group representation operators)
similar to the Glauber CS. In particular, taking the vacuum state as the reference state, one
can identify the customary one- or two-mode squeezed states as Perelomov CS for appropriate
boson realizations of su(1, 1) Lie algebra [6, 7]. Spin CS [8], which are similar to what
are sometimes referred to in the literature as the atomic CS or the Bloch CS [9], are good
SU(2) examples. Two-mode SU(2) CS using Schwinger’s boson realization have also been
discussed [10]. It is interesting to mention here that the binomial states [11] can be viewed as
Perelomov CS connected to the Holstein–Primakoff realization (HPR) of su(2) [12,13], while
the negative binomial states [14,15] can be viewed as connected to the HPR of su(1, 1) [16,17].
The multiboson CS based on the HPR of su(2) and su(1, 1) can be constructed by using
generalized Bose operators [18].

In the second approach developed by Barut and Girardello [19] one deals with eigenstates
of the lowering operator element of the Lie algebra. For the appropriate realizations of su(1, 1)
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these turn out to be Schrödinger cat states [20] in the one-mode case and pair CS [21] in the
two-mode case. However, CS cannot be defined for compact Lie groups, e.g. the SU(2) group,
in this way.

There is a third approach to define the CS for various Lie groups. We are referring to
constructing states leading to an equality in the Heisenberg uncertainty relation for Hermitian
generators of a Lie group. The states defined in this way are called intelligent states (IS)—
Aragone et al [22] were the first to use this terminology in the literature, when they derived
the spin IS and pointed out the difference between minimum uncertainty states and IS. It
goes without saying that the states providing an equality in the uncertainty relation do not, in
general, reach a minimum uncertainty. In the last two decades, there has been much concern
about IS, mainly in the context of quantum optics. One of the principal reasons for this
concern lies in the close relationship between IS and squeezing [23]. In addition, the IS often
show a variety of other nonclassical properties, such as antibunching effect, sub-Poissonian
photon statistics [24], oscillatory photon counting distributions [25] and, in the two-mode
case, violations of the Cauchy–Schwarz inequality [26]. Of particular interest are the IS with
respect to single-mode two-photon realization of su(1, 1), which are in connection with the
concept of amplitude-squared squeezing. These states were studied in great detail by Hillery
and co-workers [27, 28], Prakash and Agarwal [29] and Marian [30]. In the corresponding
two-mode case, the sum squeezing is identified with SU(1, 1) squeezing and the difference
squeezing with SU(2) squeezing [31]. The two-mode SU(1, 1) IS were studied by Gerry
and Grobe [32]. Two-mode SU(1, 1) and SU(2) IS have been demonstrated to be useful for
improving the precision of measurements in quantum optics [33, 34]. Finally, it is of interest
to refer to [35], where the IS associated with the HPR of su(1, 1) have been introduced and
their properties investigated.

In this paper we study the IS associated with the HPR of su(2). These do not appear
to have been considered so far. We shall derive the explicit expressions of these states and
discuss their interesting special cases and asymptotic behaviour. We shall also demonstrate
their remarkable nonclassical properties. Let a (a†) denote the annihilation (creation) operator
of a photon of a single-mode electromagnetic field ([a, a†] = 1) and N represent the number
operator a†a. We consider the following set of operators:

J3 = N − M/2 J+ = a†
√
M − N J− = J †

+ = √
M − Na (1)

where M is a positive integer. These operators satisfy the commutation relations

[J3, J±] = ±J± [J+, J−] = 2J3 (2)

which constitute the HPR of su(2) [12]. The basis states of the relevant (M + 1)-dimensional
representation of SU(2) coincide with the number (Fock) states

|n〉 = 1√
n!
(a†)n|0〉 n = 0, 1, . . . ,M (3)

with J3’s eigenvalues being −M/2,−M/2+1, . . . ,M/2. If we alternatively introduce another
pair of operators

J1 = 1
2 (J+ + J−) J2 = 1

2i
(J+ − J−) (4)

then one can see that they satisfy the commutation relation

[J1, J2] = iJ3 (5)

from which follows the uncertainty relation

(�J1)
2(�J2)

2 � 1
4 |〈J3〉|2 (6)
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with (�Ji)
2 = 〈J 2

i 〉−〈Ji〉2 (i = 1, 2). In view of (6) we shall call a state SU(2) squeezed [23]
if

(�J1)
2 < 1

2 |〈J3〉| or (�J2)
2 < 1

2 |〈J3〉|. (7)

Let us now introduce the IS |ψ〉. They are defined to be those states which satisfy (6) as an
equality. It is well known that such states must satisfy the following eigenvalue equation:

(J1 + iλJ2)|ψ〉 = β|ψ〉 (8)

where β is a complex number and λ is a real number. One can easily verify that �J 2
i are given

by

(�J1)
2 = λ

2
〈ψ |J3|ψ〉 (�J2)

2 = 1

2λ
〈ψ |J3|ψ〉 (9)

from which it stands to reason that λ is an SU(2) squeezing parameter: if |λ| < 1 (> 1), �J1

(�J2) is squeezed.
In section 2 we derive the analytic solutions to the eigenvalue equation (8). These

solutions |ψ〉 are explicitly expressed in terms of the Gauss hypergeometric functions. Various
interesting special cases and asymptotic properties of |ψ〉 are presented in section 3. Section 4 is
devoted to demonstration of the nonclassical properties possessed by |ψ〉, such as the oscillatory
behaviour of photon counting distributions and the antibunching effect as well as quadrature
squeezing. We analyse the dependence of these effects on the parameters involved in |ψ〉
by making numerical evaluations. The Wigner function will also be investigated, for it helps
provide insight into the nonclassical nature of the radiation field in |ψ〉. Finally, in section 5,
we summarize the results and comment on the possibility of the generation of |ψ〉.

2. Analytic solutions

Let us rewrite the eigenvalue equation (8) in terms of J+ and J− as(
1 + λ

2
J+ +

1 − λ

2
J−

)
|ψ〉 = β|ψ〉. (10)

When λ = ±1, (8) becomes J±|ψ〉 = β|ψ〉. The only eigenstate of J+ (J−) is the Fock
state |M〉 (the vacuum state |0〉) with the corresponding eigenvalue 0. When λ 	= ±1, we
follow the method Hillery and co-workers used in the investigation of IS for amplitude-squared
squeezing [28] and introduce new states |ϕ〉 by

|ψ〉 = S(ξ)|ϕ〉 S(ξ) = exp(ξJ+ − ξ ∗J−) (11)

where the parameter ξ ≡ reiθ will be determined later. Using the identities

S−1(ξ)J±S(ξ) = J± cos2 r − J3e∓iθ sin 2r − J∓e∓2iθ sin2 r (12)

we obtain the equation satisfied by |ϕ〉:
1
2 {J+[(1 + λ) cos2 r − (1 − λ)e2iθ sin2 r] + J−[(1 − λ) cos2 r − (1 + λ)e−2iθ sin2 r]

−J3[(1 + λ)e−iθ + (1 − λ)eiθ ] sin 2r}|ϕ〉 = β|ϕ〉. (13)

Demanding that the coefficient of J+ vanish leads to

tan2 r = 1 + λ

1 − λ
e−2iθ . (14)
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This suggests that we choose θ = 0, r = arctan
√

1+λ
1−λ

for |λ| < 1, and θ = π/2,

r = arctan
√

λ+1
λ−1 for |λ| > 1. With these choices equation (13) becomes(

−λJ− −
√

1 − λ2J3

)
|ϕ〉 = β|ϕ〉 |λ| < 1 (15)(

J− + i
λ

|λ|
√
λ2 − 1J3

)
|ϕ〉 = β|ϕ〉 |λ| > 1. (16)

We now concentrate only on deducing the exact solutions for the case |λ| < 1, the
procedure for |λ| > 1 being quite similar. Expanding |ϕ〉 in terms of Fock states as
|ϕ〉 = ∑M

m=0 cm|m〉 and substituting it into (15), and taking into account the well-known
relations for the action of boson operators onto the Fock states (e.g. [3]), we obtain the following
equations:[
β +

M

2

√
1 − λ2

]
cM = 0 (17)

−λcm+1

√
m + 1

√
M − m =

[
β +

√
1 − λ2(m − M/2)

]
cm (m = 0, 1, . . . , (M − 1)).

(18)

From equation (17) we have β = −M
2

√
1 − λ2 or cM = 0. If β = −M

2

√
1 − λ2, then we

can obtain all the expansion coefficients cm from (18). If, on the other hand, cM = 0, then
from (18) we have [β +

√
1 − λ2(−1 + M/2)]cM−1 = 0 and there are still two possibilities:

β = √
1 − λ2(−M/2 + 1) or cM−1 = 0. In general, cM 	= 0 or for K = 0, 1, . . . ,M − 1,

cM = · · · = cK+1 = 0 but cK 	= 0. Thus there exist (M + 1) eigenvalues which are given by

β =
√

1 − λ2(M/2 − K) (K = 0, 1, . . . ,M). (19)

Note that in the case |λ| < 1 all the eigenvalues are real. Inserting (19) into (18) we get the
recursion relation

−λcm+1

√
m + 1

√
M − m =

√
1 − λ2(m − K)cm (K = 0, 1, . . . ,M;m = 0, 1, . . . , K).

(20)

It then follows that

cm = c0

(
K

m

)√(
M

m

)−1 (√
1 − λ2/λ

)m
(21)

with c0 being the normalization constant,

c0 =
{ K∑

m=0

(
K

m

)2 (
M

m

)−1

[(1 − λ2)/λ2]m
}−1/2

= {2F1[−K,−K; −M; −(1 − λ2)/λ2]}−1/2. (22)

Here 2F1(a, b; c; ζ ) is the Gauss hypergeometric function [36]. Then, inserting a complete
set of number states into equation (11), we can express |ψ〉 for the case |λ| < 1 as

|ψ〉(|λ|<1) =
M∑
n=0

d(|λ|<1)
n (M,K, λ)|n〉 (23)

where

d(|λ|<1)
n (M,K, λ) =

K∑
m=0

cm〈n|S
(

arctan

√
1 + λ

1 − λ

)
|m〉. (24)
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To get the explicit expressions of d(|λ|<1)
n (M,K, λ) we have to evaluate the matrix element

〈n|S(arctan
√

1+λ
1−λ

)|m〉. This can be achieved by using the Baker–Campbell–Hausdorff formula

for SU(2) [37]

exp(ξJ+ − ξ ∗J−)

= exp

[(
ξ

|ξ | tan |ξ |
)
J+

]
exp[−2(ln cos |ξ |)J3] exp

[
−
(
ξ ∗

|ξ | tan |ξ |
)
J−

]
(25)

and the following two identities:

(√
M − Na

)n
|m〉 =


 n!

√(
m

n

)(
M − m + n

n

)
|m − n〉 n � m

0 n > m

(26)

(
a†

√
M − N

)n
|m〉 =


 n!

√(
M − m

n

)(
n + m

n

)
|m + n〉 n � M − m

0 n > M − m.

(27)

After some manipulation, we obtain the explicit expression of 〈n|S(arctan
√

1+λ
1−λ

)|m〉 which

reads

〈n|S
(

arctan

√
1 + λ

1 − λ

)
|m〉 = (−)m

(√
1 + λ

1 − λ

)m+n√(
M

n

)(
M

m

)

×
(√

1 − λ

2

)M
2F1[−n,−m; −M; 2/(1 + λ)]. (28)

Inserting (21), (22) and (28) into (24) and making use of the formula [36]
∞∑
n=0

(
η

n

)
tn2F1(−n, b; c; ζ ) = (1 + t)η2F1[−η, b; c; tζ/(1 + t)] (29)

we find that d(|λ|<1)
n (M,K, λ) can be written in a closed form, i.e.

d(|λ|<1)
n (M,K, λ) = {2F1[−K,−K; −M; −(1 − λ2)/λ2]}−1/2

(√
1 − λ

2

)M
(−λ)−K

×
√(

M

n

)(√
1 + λ

1 − λ

)n
2F1(−n,−K; −M; 2). (30)

Proceeding in the same way, we obtain the explicit expressions of normalized IS |ψ〉 for the
case |λ| > 1

|ψ〉(|λ|>1) =
M∑
n=0

d(|λ|>1)
n (M,K, λ)|n〉 (31)

where

d(|λ|>1)
n (M,K, λ) = {2F1[−K,−K; −M; −(λ2 − 1)]}−1/2

(√
λ − 1

2λ

)M
(−λ)K

×
√(

M

n

)(
i

√
λ + 1

λ − 1

)n
2F1(−n,−K; −M; 2). (32)
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The corresponding eigenvalues are

β = i
λ

|λ|
√
λ2 − 1(K − M/2) (K = 0, 1, . . . ,M). (33)

All the eigenvalues in (33) are, contrary to the case of |λ| < 1, purely imaginary. We recall that
the eigenvalues corresponding to the SU(1, 1) IS are, in general, arbitrary complex numbers
(e.g. [28–30]); however, here we see that for the SU(2) IS the eigenvalues must be either real
or purely imaginary. This seems to be an underlying distinction between su(2) and su(1, 1).
So far, we have completed the derivation of the analytic solutions. These explicit expressions
enable us to directly discuss the various properties of the IS. Before concluding this section let
us show that the photon-counting distribution of |ψ〉 is symmetric with respect to the parameters
λ and K , respectively. From (30) and (32) it is easily seen that

d(|λ|>1)
n (M,K, λ = λ0) = einπ/2d(|λ|<1)

n (M,K, λ = 1/λ0) (34)

where λ0 is an arbitrary real number whose absolute value is greater than 1, thereby implying
that the distribution for λ = λ0 (λ0 is an arbitrary real number) is entirely the same as the
distribution for λ = 1/λ0. In addition, with the use of the transformations [36]

2F1(a, b; c; ζ ) = (1 − ζ )−a
2F1[a, c − b; c; ζ/(ζ − 1)] (35)

= (1 − ζ )c−a−b
2F1(c − a, c − b; c; ζ ) (36)

quite simply one can verify

dn(M,M − K, λ) = (−)M+ndn(M,K, λ) (37)

which means that the photon-counting distributions for K = K0 (K0 is an arbitrary non-
negative integer less than or equal to M) and K = M − K0 are exactly the same.

3. Special cases and asymptotic behaviour of |ψ〉

3.1. Special cases

In 1985, Stoler et al [11] introduced the binomial states (BS) of a quantized radiation field:

|M,p, θ〉 =
M∑
n=0

√(
M

n

)
pn(1 − p)M−neinθ |n〉 0 < p < 1. (38)

Since then, these states have attracted attention, mainly due to the fact that they interpolate
the number states and the Glauber CS [38]. For this reason the BS are termed a class of
intermediate states in quantum optics. As pointed out by Fan and Jing [13], the BS can be
viewed as Perelomov CS connected with the HPR of su(2), namely

|M,p, θ〉 = exp[reiθ (J+ − J−)]|0〉 r = arcsin
√
p. (39)

Using the formulae 2F1[0, b; c; ζ ] = 1 and 2F1[−a,−b; −b; −ζ ] = (1 + ζ )a in (30) and (32)
we find that |ψ〉 reduce to special BS when K = 0 or K = M:

|ψ〉(|λ|<1) =
{

|M, (1 + λ)/2, 0〉 K = 0

|M, (1 + λ)/2, π〉 K = M
(40)

|ψ〉(|λ|>1) =
{

|M, (1 + λ)/(2λ), π/2〉 K = 0

|M, (1 + λ)/(2λ),−π/2〉 K = M .
(41)

Further, in two limiting cases from BS, of course, |ψ〉 respectively degenerate to the number
states and the Glauber CS.
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We now consider another kind of special case: M is an even number and K = M/2. This
corresponds to eigenvalues β being zero. The use of the identity [36]

(c − a)2F1(a − 1, b; c; ζ ) + (2a − c − aζ + bζ )2F1(a, b; c; ζ )
+a(ζ − 1)2F1(a + 1, b; c; ζ ) = 0 (42)

enables us to obtain

(n − 2K)2F1(−n − 1,−K; −2K; 2) = n2F1(−n + 1,−K; −2K; 2). (43)

Then, taking into account 2F1(−1,−K; −2K; 2) = 0 and 2F1(0,−K; −2K; 2) = 1, we
derive

2F1(−n,−K; −2K; 2) =

 (−)n/2 (n − 1)!!(2K − n − 1)!!

(2K − 1)!!
for n even

0 for n odd.
(44)

Inserting (44) into (30) and (32) we find that all odd coefficients vanish and only states with
even photon numbers survive. The resulting states read

|ψ〉 = d0

K∑
n=0

[(
− 1 + λ

1 − λ

)n√
(2K)!!(2K − 2n − 1)!!

(2K − 1)!!(2K − 2n)!!

√
(2n)!

2nn!

]
|2n〉 (45)

where

d0 =
{ {2F1[−K,−K; −2K; −(1 − λ2)/λ2]}−1/2[(1 − λ)/(−2λ)]K |λ| < 1

{2F1[−K,−K; −2K; −(λ2 − 1)]}−1/2[−(λ − 1)/2]K |λ| > 1.
(46)

We also note from equation (20) that when λ = 0, (m−K)cm = 0, which means cm = 0
for m = 0, 1, . . . , (K − 1) but cK 	= 0. Therefore, |ϕ〉(λ=0) is simply the Fock state |K〉 and

|ψ〉(λ=0) = S(π/4)|K〉. (47)

3.2. Asymptotic properties

3.2.1. Limit leading to the squeezed vacuum. Consider λ < 0, K = [M/2], where the
notation [x] denotes the greatest integer less than or equal to x. In the limit M → ∞, it is
obvious from (19) and (33) thatβ keeps finite and thus the eigenvalue equation (10) degenerates
to

(µa + νa†)|ψ〉 = 0 (48)

where

µ = 1 − λ

2
√−λ

v = 1 + λ

2
√−λ

µ2 − ν2 = 1. (49)

Equation (48) is nothing other than the eigenvalue equation satisfied by the squeezed
vacuum [6].

3.2.2. Limits leading to squeezed CS and further to Glauber CS. Consider λ < 0,
K = [M/2] − γ [

√
M] with γ being a positive integral parameter. In the limit M → ∞

but keeping γ finite (i.e. γ � √
M), the eigenvalue equation (10) reduces to

(µa + νa†)|ψ〉 = τ |ψ〉 (50)

wherein µ and ν remain as given above and τ is given by

τ =
{
γ
√
λ − (1/λ) −1 < λ < 0

iγ
√

−λ + (1/λ) λ < −1
(51)
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thereby implying that in this limit |ψ〉 tend to the squeezed CS (i.e. two-photon CS). In a further
limit λ → (−1)+ (i.e. the right-hand limit of −1), γ → ∞ (but keeping γ � √

M , needless to
say) with γ

√
λ + 1 = α/

√
2 finite (α is a real number), the eigenvalue equation (10) reduces

to

a|α〉 = α|α〉 (52)

|α〉 being the Glauber CS. Similarly, in the limit λ → (−1)− (i.e. the left-hand limit of −1),
γ → ∞, while γ

√−(λ + 1) = α/
√

2 are finite, |ψ〉 approach the Glauber CS |iα〉. All the
facts above indicate that the IS |ψ〉 provide a way of treating the relations amongst different
important states in quantum optics.

4. Nonclassical properties

As remarked in section 2, there exist parametric symmetries with respect to λ and K in
the photon-counting distribution. These lead to corresponding parametric symmetries in the
properties (e.g., the sub-Poissonian distribution and the antibunching effect as well as the
Wigner function) which are entirely determined by the photon-counting distribution. That is,
when we examine one such property we should only consider the region |λ| < 1 and the values
of K less than or equal to M/2. Nevertheless, one should note that the squeezing properties
depend not only on the photon-counting distribution, but also on the phase of the expansion
coefficients of |ψ〉. We realize from the phase factor einπ/2 in equation (34) the necessity of
considering the whole range of λ (from −∞ to +∞) when studying the squeezing properties
of |ψ〉.

In figure 1 we plot the photon-counting distribution P
(|λ|<1)
n = |d(|λ|<1)

n (M,K, λ)|2 for
M = 40, K = 10 and different values of λ. The oscillations in the distribution can easily be
seen. It is known that oscillatory behaviour of the photon-counting distribution is manifestly
nonclassical and can be associated with interference in phase space [25]. The centre of the
distribution is rather sensitive to λ. For given parameters M and K , the maximum of the
distribution shifts to larger values of n with increasing λ. In the case λ = 0 (corresponding
to the state S(π/4)|K〉), the distribution is symmetric with respect to n; this fact can also be
inferred from taking λ = 0 in (30) and making use of (35). In figure 2 we plot P (|λ|<1)

n for
M = 80, K = 40 and λ = −0.1, which clearly displays the absence of odd photon numbers
and approximates to the distribution of a squeezed vacuum, as demonstrated before.

A field is antibunched if its second-order correlation function g(2)(0) < 1 [39], namely

g(2)(0) = 〈N2〉 − 〈N〉
〈N〉2

< 1. (53)

The sub-Poissonian character and antibunching effect are always coincident for single-mode
and time-independent fields. In our numerical study of g(2)(0), we plot this function against
the parameter λ (in the region |λ| < 1) for M = 10 and different values of K (see figure 3).
When K = 0 (BS), g(2)(0) keeps 0.9 (i.e. (1 − 1/M)) as expected and so the antibunching
behaviour persists for the whole interval of λ. When K 	= 0 it is observed that there are always
some intervals of λ within which the IS exhibit antibunching effect.

The quadrature operators of the single-mode field are defined as

X = 1√
2
(a + a†) P = 1√

2i
(a − a†). (54)

They satisfy the commutation relation [X,P ] = i and consequently their variances (�X)2 =
〈X2〉 − 〈X〉2, (�P )2 = 〈P 2〉 − 〈P 〉2 obey the Heisenberg uncertainty relation

(�X)2(�P )2 � 1
4 . (55)
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Figure 1. The photon-counting distributions P (|λ|<1)
n of

the IS |ψ〉 for M = 40, K = 10 and different values of
λ: (a) λ = −0.1, (b) λ = 0, (c) λ = 0.1.

Figure 2. The photon-counting distribution P
(|λ|<1)
n of

the IS |ψ〉 for M = 80, K = 40 and λ = −0.1.
Figure 3. The second-order correlation function g(2)(0)
of the IS |ψ〉 as a function of λ for M = 10 and different
values of K .

The field is said to be squeezed in the X (P ) quadrature if (�X)2 < 1
2 ((�P )2 < 1

2 ). For the
sake of convenience, we define the squeezing indices as

Sx = 2(�X)2 − 1 Sp = 2(�P )2 − 1. (56)

When Sx < 0 (Sp < 0), the field is squeezed in the X (P ) quadrature. From equation (54) Sx
and Sp are expressed as

Sx = 〈a2 + a†2〉 + 2〈N〉 − 〈a + a†〉2 (57)

Sp = −〈a2 + a†2〉 + 2〈N〉 + 〈a − a†〉2. (58)

We have plotted Sx and Sp in figure 4, against the parameter λ for M = 10 and different
values of K (as remarked before, we should only consider the values of K less than or equal
to M/2). One can see that the IS |ψ〉 do exhibit squeezing in the quadrature X or P ; however,
the depth of squeezing and the range of λ over which squeezing is observed are very sensitive
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Figure 4. Squeezing indices Sx (a) and Sp (b) of the IS |ψ〉 as functions of λ for M = 10 and
different values of K .

Figure 5. Squeezing indices Sx (a, c) and Sp (b, d) of the IS |ψ〉 as functions of λ for different
values of M and K such that M = K (c, d) or M = 2K (a, b).

to the values of K . When K = 0 (corresponding to BS), X-squeezing is present in the range
−1 < λ < 0.57, while theP -squeezing regions are within the intervals |λ| > 1. WhenK 	= 0,
the X-squeezing region is within the interval (−1, 0) while the P -squeezing region is within
(−∞,−1); as K increases, both X-squeezing and P -squeezing become more effective. In
order to study the dependence of squeezing on the maximum excitation number M , we have
plotted Sx and Sp in figure 5, against the parameter λ for different values of M and K such
that M = K or M = 2K . It turns out that increasing M can enhance squeezing and broaden
the squeezing range.
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Quasi-probability distributions can help provide insight into the nonclassical nature of
radiation fields. Of these, the Wigner function [40] plays an exceptional role as it contains
complete information about the state of the system, i.e. it carries the same information as the
density operator or the corresponding wavefunction. The Wigner function is defined as the
Fourier transform of the characteristic function, associated with the symmetrical order of the
annihilation and creation operators. Alternatively, the Wigner function for an arbitrary density
operator ρ may be given by [41]

W(z) = 2

π
Tr[ρD(2z) exp(iπN)] (59)

where D(z) = eza
†−z∗a is the displacement operator of the harmonic oscillator and z is a

complex c-number. Inserting ρ = |ψ〉〈ψ | we obtain the Wigner function of the IS |ψ〉 as

W(z) = 2

π

M∑
n=0

M∑
m=0

d∗
n(M,K, λ)dm(M,K, λ)(−1)mχnm(2z). (60)

Here [42]

χnm(z) = 〈n|D(z)|m〉 =




√
m!

n!
e−|z|2/2zn−mLn−m

m (|z|2) n � m√
n!

m!
e−|z|2/2(−z∗)m−nLm−n

n (|z|2) n < m

(61)

wherein Lν
m(x) ≡ ∑m

l=0

(
m+ν
m−l

)
(−x)l

l! is the associated Laguerre polynomial. From (60) it is
apparent thatW(z) is a symmetric function in Im (z). As stated before, we should only consider
the region |λ| < 1. We have studied numerically the behaviour of the Wigner function W(z) as
a function of z = Re (z) + iIm (z) for M = 2, K = 0, 1 and different values of λ. The results
are shown in the sequence of figures 6(a)–(h). With reference to figures 6(a) and (b) we see
that when λ is close to −1, the function has an almost Gaussian shape centred in the origin,
and is largely insensitive to change in K . This is reasonable because of the dominance of the
effect of the vacuum state over the effects of the higher excitations. As λ increases (λ = −0.1,
for instance), which means that the vacuum state begins to lose its higher probability in the
number state expansion, some negative part of the distribution appears. As is well known, the
negativity of the Wigner function signifies nonclassical effects. When the value of λ is even
larger, the negative part is even larger, W(z) deviates far away from the Gaussian distribution
and the rings characteristic of a number state start being formed, as we can appreciate in the
plot of λ = 0.8. When λ = 1, the number state is produced.

5. Concluding remarks

In this work we have introduced the IS associated with the HPR of su(2) and shown that they
display strong nonclassical properties such as the oscillatory behaviour of photon-counting
distributions and the antibunching effect as well as quadrature squeezing. These states turn
out to be a new class of intermediate states, for they take different important states as their
special or limiting cases.

We finally briefly discuss the possibility for the realization of the IS |ψ〉. As a matter of
fact, although the generation of pure superposition states has been a major subject in quantum
optics, it does not seem to be a task of immediate implementation. To the author’s knowledge,
even the realization of the BS is not available yet. Recently, some progress has been made
in schemes for realizing arbitrary pure states. In [43], for example, a method based upon
a nonunitary ‘collapse’ of the state vector of the cavity-field mode via atom ground-state



3358 Nai-Le Liu et al

Figure 6. Wigner function W(z)(z = Re (z) + iIm (z)) of the IS |ψ〉 for M = 2, K = 0 or K = 1
and different values of λ: (a) K = 0, λ = −0.8, (b) K = 1, λ = −0.8, (c) K = 0, λ = −0.1,
(d) K = 1, λ = −0.1, (e) K = 0, λ = 0.1, (f ) K = 1, λ = 0.1, (g) K = 0, λ = 0.8, (h) K = 1,
λ = 0.8. (Continued opposite.)
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Figure 6. (Continued)

measurement is proposed for preparing a cavity-field mode undergoing a Jaynes–Cummings
dynamics in any superposition of a finite number of Fock states in principle. The scheme
in [44], however, uses a cavity QED unitary time-dependent interaction. With respect to these
two methods, it has been argued by the authors of [45] that ‘both approaches involve individual
atoms interacting with a single-mode cavity field, which would demand extraordinary control
in a generation experiment. It is therefore interesting to seek alternative methods for the
generation of nonclassical light’. The method proposed in [45] is to construct a Hamiltonian
which would allow the use of some kind of nonlinear interaction for the production of arbitrary
pure states. In a more recent paper [46] it is shown that arbitrary pure quantum states can be
realized by a succession of alternate state displacement and single-photon adding. Based on
the above significant studies, the IS |ψ〉 will hopefully be produced in the not too distant future.
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